
,-AI92 474 IMPLICIT FINITE-DIFFERENCE SIMULATION OF AN INTERNAL i/I
FLOW ON A HVPERCUBE(U) VALE UNIV NEW HAVEN CT DEPT OF
COMPUTER SCIENCE P PORTA JAN 88 YALEU/DCS/RR-594

UNCLASSIFIED N88814-86-K-8318 F/G 20/4 ML

El00EE00EEE1iEEEEEllllhllhEEl

11111. 1. .6_ _

11111C

ITI

fLECTEf

igm EVERI~

f7pprod &a publio loSUG

YALE UNIVERSITY
DEPARTMENT OF COMPUTER SCIENCE

88 318 028

Abstract:
'-~- The purpose of this work is to study the solution of a 2-D) compressible viscous fluid flow in a

nozzle on a Hypercube.
The analysis of the physical problem on a serial computer and an outline of its parallelization

on the hypercube were detailed inA1Of 7

I>Ww-propo.. -now-ia this paper,,,td detail all the steps of the parallelization and our results:
speedups, efficiencies and communication time versus arithmetic time.-

Acus.SIO. For

NTIS CRAMI v
O TIC TAB

Avj t~'j COdJes
Avail &nior

Dist je.3

Implicit Finite-Difference Simulation
of an Internal Flow on a Hypercube

Pirr PrtDTIC
Resarch Report YALEU/DCS/RR-594 A ELECTE f

*January 1988 MAR2 5 IM

l ot h' .*

This work was supported by ONR grant N00014-86-K-0310

I jj ;11

1. Introduction

The purpose of this work is to study the solution of a 2-D compressible fluid flow on a Hyper-

cube, and to see the improvement in the computational time got with such a distributed memory

messagje-pasing machine.

In the realization of this project, the chosen methodology was first to solve the physical problem

by the implementation of a serial code, then to study the parallelization of this code on a Hypercube

[10].

The solution of the fluid flow in a convergent-divergent nozzle is a problem wich has been

studied by several authors on sequential [3, 4, 10, 12, 201 and vector [191 computers and we propose

now to study the parallelization of this problem on a machine such as the iPSC Intel Hypercube.

4, A general technique of solution of the Navier-Stokes equations [17, 18] mainly based on the

combir ation of a general curvilinear coordinate transformation aqd an implicit method has given

some good results and is used here.
0

More precisely, the Navier-Stokes equations are solved with the Beam-Warming implicit me

- thod [11, which leads to the computation of two sets of linear systems alternatively solved (ADI

method).

The implementation of this numerical simulation on the Hypercube is based on a block method

that is to say that the computational domain is decomposed in strips for both the x and y-directions.

Two differents schemes of communications among the processors are implemented and gave some

good results concerning the efficiency of the parallel code.

In the first chapters, we introduce the physical problem which lead to the computation of a

serial code, then we analyze and discuss the results of the code implemented on the Hypercube.

2. The model equations

2.1. Transformed Navier-Stokes equations

The motion inside the nozzle (see figure 1) is governed by the unsteady averaged Navier-Stokes

equations in the inertial cartesian coordinates (x,y,t). If we take for the dependent variables, the

cartesian velocity components, these basic set of equations can be transformed to a new body-fitted

curvilinear coordinate system (, 17, r), while retaining the'strong conservation law form [9, 17, 18,
20, 22]. The space (C, Y7, r) called computational space corresponds to a rectangular domain [21].

Due to the geometrical properties of the nozzle, we can restrain the transformation (M 7, r) to [19]:

ram.

= = = t1

0,% r - - # . . , / -# e , -# r " .. ,.e .. (, -.

The resulting equations, written in the non-dimensional form and in the strong conservation law

form, are given by [9, 17, 18]:

. + a + 8 = Re-'[-C(- 1(Cg)) + a,,(J-1 (,.gi + ?,,g2))l (1)

where:

S' pU (PV

(2 U - (PU + CP J1PUV + tZp

PVJ PVU fv + 17v
en (en + p)U (en + p)V

0 0

r~r-rxx rvx

c' 91g4 924
with:

T.. = (A + 2p)u. + AvV

r'., = (A + 2,u)V + AU.- - -

914 = ur,, + v;r, + kPr-l(-l - l)-1*aa
924 = ur.y + vrV + kPr-1 (- 1)-a, a

and:

U = GU , V = '7x, + 17yl (2)

The velocities U and V are called the contravariant velocity components, and correspond to

the decomposition of the vector velocity along the and rL curvilinear coordinates.

J is the transformation Jacobian:

J (3)

- I " 2

The cartesian derivatives such as u. are expanded in the (, t) space via chain-rule relation:

U, = G2 uf + ,1.uz (4)

And, the metrics Cz, PI, r7, formed from chain-rule extension of xj, yC, y,, are given by the fol-

lowing relations:

G, = JY ,? 'z= -JY y Jf =(5)

and:

p: density.

u, v: cartesian velocity components.

en: total energy.

p: pressure.

a: sound speed (a = V'7RT).

T: temperature.

-y: ratio of specific heats (dry air: -y =1.4).

•u: dynamic viscosity.

* A: taken with the Stokes hypothesis A = -(2/3)p. (6)

k: coefficient of thermal conductivity.

R: gas constant.

U: modulus of the velocity (U = 'I +Tv2).

D: specific length.

CP: specific heat.

Re: Reynolds number (Re = (UDp)/II).

Pr: Prandtl number (Pr = (iscp/k).
M: Mach number (M = U/a).

The equations (1) are completed by the equation defining the pressure:

p = (- - 1)[en - 0.spcu 2 + V2)] (7)

As our nozzle is symmetric about the central axis y=O, we can restrict our study to the upper

side of the nozzle.

3

2.5

Itn)
2

45

I 2 (In)

fIn)

Figure 1: 450 - 150 Convergent-Divergent Nozzle

2.2. Simplified form: the parabolic equations

Classically for high Reynolds number flows, we solve the viscous terms only near the rigid

boundaries. We also make the hypothesis of the parabolic approximation that the viscous terms in

C (along the body) are neglected and only the viscous terms in q are retained.

The equations (1) are then equal to [9, 17, 20]:

ae + 89c + ai, = Re-L9,,a (8)
where:

0 0

p(7j. + ,t)u,, + (p/3)%,1 (,7xu,, + 1v,,)

p(,7.' + ,l)v, + (M/3),7,(,7u, + ,,) (9)

lkPr-'(-y - 1)-'(, . + 7')a9," + g(t7 + 171)(U 2 + V2)q/2

+p/r(,1U2 + q.V2 + 2,j7.,(uv),)

Note that unlike boundary-layer theory, the pressure p can vary through the viscous layer, and

all the inertial terms of the normal momentum equation are retained.

4

IIOMMMM

3. Boundary and Initial conditions

3.1. Boundary conditions

The equations (8) have to be solved in the computational domain subject to different conditions

on the boundaries.

The curvilinear coordinate system (C,tl) is defined such that the inflow and outflow boundaries

are two C-coordinate lines, and the wall and the symmetric axis are two 17-coordinate lines.

At the nozzle wall, we have for the velocity the no-slip condition: u = v = 0 and, for the

temperature we can take the adiabatic condition: 6 . VT = 0, with fi the vector normal to the

surface.

Because of the symmetry of the nozzle, we consider the axis y=O as one of the boundaries of

this problem (see figure 1). In order to limit the overloading of the code, we just limit ourselves to

a condition on the vertical component of the velocity v : v = 0 as it is an odd function of y.

At the upsteam inflow boundary, the pressure p and the temperature T are constant during

all the computation, and are equal to their stagnation correspondants that is : p = p, and, T = T0 .

The components u and v of the velocity are given by the relation: u = v tan 0(y) where 0(y) is

a function given by Holder et al [5].

And finally, as the downstream outflow boundary corresponds to the case of a supersonic flow

(M > 1), no boundary conditions are required. The variables are determined by extrapolation

from the interior points.

3.2. Initial condition

All the variables at the beginning of the computation were computed under the 1-D approxi-

mation method (isentropic flow, perfect fluid).

In such an approach, the values of the variables at a specified section of the nozzle are given by

the geometric ratio of the aera of the section over the throat section, and by the chosen stagnation

conditions [6, 16]. In particular, we have taken here: P, = 6.2 105 N/m 2 and To = 300K.

The Reynolds number for this initial condition was then equal to: Re 1.5 x 106.

501

w

4. Numerical Method

We solve the equations (8) in the computational domain (C, t7) subject to the boundary con-

ditions described in section 3.1, with the implicit delta-form, approximate-factorization, Beam-

Warming algorithm.

An implicit numerical method is employed here in order to avoid the severely restrictive stabil-

ity conditions of an explicit method, when small grid spacings are used. Such a situation is needed

near the wall for an accurate computation of the viscous effects.

In the basic Beam-Warming algorithm, the spatial derivative terms in the Navier-Stokes equa-

tions are approximated by standard second-order accurate central-difference operators, and the

implicit 0-method of Richtmyer and Morton is taken for the time differencing [91.

The computation of the boundary points can be computed directly by the numerical resolution

of the equations (see [201) or by extrapolation from the interior points at the end of each time step

(see [17]). The second case degrades the time accuracy on the boundary to a zero-order but gives

a more simple scheme. We have chosen here the second case.

4.1. Time Differencing

The equations of Navier-Stokes in their final form (8) are rewritten here as:

J ,8 = -[a8 + as- Re-8a,7] = P (10)

Using n for the time index and h for the time step, we apply the Richtmyer and Morton

method, and we obtain [9]:

I4+1 = 4n + hi(1 - 0) n+l + Ofn]

This method is first-order accurate in time for 0 = 0 (Implicit Euler method), and is second-

order accurate in time for 0 = 1/2.

Since we seek only the asymptotic steady state solution, we can employ the first-order accurate in

time method. The accuracy of the solution is given by the spatial difference operators [l.

So we have:

6

N

4n+l = 4n + hn+l (12)

In order to define the non-linear term 9 rn+l, we must locally linearized the terms 6, f and § in

terms of 4. This is done by using the Taylor series expansions:

an+ = an + En(Cn+ I 4n) + 0(h 2). (13.a)

in+1 =/i + F"(4n+I _ 4n) + 0(h2). (13.b)

§n+1 = §n + G"(4n+1 4n) + o (h 2). (13.c)

where E, F and C are the flux Jacobian matrices:

E = a/a4, F = af/a4 , G = a~laq (14)

The matrices E or F are given by [9, 171:

(0 K1 K2 0

E,F 0 0 - Kl(-y - 2)u u - (-- 1)Klv KI(7 -1) (15)
K 2 ,2 -vO Klv - K2 (-y - 1)u 0 - K2 (Y - 2)v K 2 ("y- 1)

0(202 - "y(en/p)) [KjP - (-I - 1)us] [K2# - (-t - 1)vO] -(0 J

where:

02 = 0.5(-y - 1)(u 2 + v2) ,/ -y "(en/p) - .02 and, 0 =-K,u + K 2v (16)

with the following definition of the coefficients K, and K 2 :

for E: K= , K 2 = 0 and, for F: K, = q, K 2 = i (17)

And for the viscous flux Jacobian term, we have [9, 17]:

7

0 0 0 0

G2 j-1 921 CI(gd1/p) 2aq,(/P) 0

l gs 21,(11p) a3s4q(lP) 0

(9g41 942 gs Q4C(1/p)

where:

921 Q , with Q aa2 (19)

9gsl) \,(v/p) /2 as

and:

C91 = p[(4/3)i7! + 112]

cs = ij! + (4/3)q7]

N = kPr-1 (-! + 17)

941 = C116,(-U 2/p) + 126,(-2uv/p) + as6n(-l 2/p) + a46(-en/p2) + C948 [(U2 + V2)/pI

g42 = -921 - C4(Ulp)

g43 = -91-c9 48,(V/P)

By means of the local linearizations the equations (12) are then rewritten:

[I + h(8 E" + 8aF - Re-I18,G)]A4" = W (20)

with:

41, = 4n+l - (21)

where the linear operator notation is to be interpreted as following:

(a1E)A4" = 1,(EnA) (22)

The left hand side of equation (20) can be factorized into a product of two one-dimensional

operators, with the same order of accuracy [1].

This results in the factorized form of equation (20):

8

11ALR

([I + hc + h(8F" - = h". (23)

the right hand side of equation (20) is defined as:

n= -[ain" + ajnf - Re-Iajn]. (24)

Finally, the vector solution 4n+1 is given by the following ADI sequence:

[I + h8 E"',]A' = h " (25.a)

[I + h(8,,Fn - Re-'a,,Gn)]A"= Ar- (25.b)

4'+1 = 4n +,4 (25.c)

For convenience, we have omitted the spatial subscript notations, all the terms were taken here

at the point (ij) of the computational domain.

But from now on, we will use the spatial subscripts again.

4.2. Space Differencing

The resolution of the ADI sequence (25.a, 25.b, 25.c) is completed by the choice of the finite

difference operators 6 for the spatial derivatives 8e and an.

We use here to approximate the convective derivatives, the standard central-difference second

order accurate operator. For example, we have for the first derivative of equation (25.a):

6,Ejj = (MEi 1 /8) = (E,+l - E_1 #)/2AC (26)

From the general form of the viscous term written as follows:

8a[(c i4a ,,,laq)] /aq (27)

we see that we have to approximate the viscous derivative in a more complicated way.

9

If, we define the following central-difference operator for a general viscous term h:

(ahPla) (h+ - kjj2)/At (28)

its application on the viscous term defined in equation (27) gives the generalized three-points

central-difference second-order accurate operator:

a[c ja i / a,)l/ a. =

1/(2 x A7 2)Ct,,.+1 + . - (.ij+j + 2 oij + ij.-) #B + (aj,, + ,,j-,),6 .- 1] (29)

corresponding to the following notation: S'#ij and 6;Gij

From these definitions, the ADI sequence is rewritten as follows:

[I + h,] ; = h (30.a)

[I + h(6iFJ - Re-6G~j)]Aq~mj = (30.b)

" -n~l "
4q ' =4 + , (30.c)

with:

f= -[68,j + 6if in - Re-'8;O1] (31)

Note that by the choice of a central-difference scheme for the space derivatives, each step of the

ADI sequence (30) involves the solution of a linear system of equations having a block-tridiagonal

coefficient matrix.

5. Numerical results for the serial code

The results corresponding to the numerical simulation of the 2-D fluid flow in the nozzle

described in figure 1 got on the VAX 8600 can be found in [101.

10

LO

6. Parallelization of the serial code on the iPSC Intel

6.1. Introduction

We are dealing now with the parallelization of the serial code on the iPSC Intel. More precisely,

we want to determine if such a parallel machine can handle a CFD problem and with what level of

performance.

We want to point out that this 2-D numerical simulation of a fluid flow for a compressible

viscous fluid made on the iPSC Intel can be viewed as a first step for the study of a more general

flow of dimension 3 on a distributed memory parallel machine.

We have seen that the numerical algorithm based on the Beam - Warming Implicit method for

the solution of the 2-D Navier-Stokes equations leads to an ADI sequence, which has already been

studied both theorically and pratically on the hypercube (see [7, 15]).

First, we recall the ADI sequence (see equations (30)), that we can express here as follows:

V. for j =2,...,31 (32.a)

CijA j =A<, for i= 2,...,63 (32.b)

with the updated vector solution ^."tl given by:"3

=4tI + "4 (32.c)

for the definition of Aj,, Cj of size 4 x 4 , and bij see chapter 4.

The purpose of this work is to study the parallelization of the specific ADI sequence given

above (equations (32)) for our computational domain. The mesh is of size 64x32, where 64 points

are used in the horizontal direction and 32 points in the vertical direction, which amounts to 2048

grids points, which in turn correspond to 8192 unknowns.

More precisely, we solve the 30 equations (32.a) (respectively 62 equations (32.b)) with i
varying from 2 to 63 (respectively with j varying from 2 to 31) which lead to the computation of

30 linear systems of size 248 (62x4) (respectively 62 linear systems of size 120 (30x4)).

Pratically, we use a one dimensional domain decomposition embedded on the hypercube com-

posed of 1=2d processors where d is the dimension of the hypercube.

11

"V N -N- N V .A . V -0 V ~

6.2. Method

The work on the hypercube is essentially based on a block method approach that is to say

that the computational domain is alternatively decomposed in horizontal and vertical strips.

The idea is to assigned to each processor a certain subset of contiguous rows and then columns,

the size of the subset depending on the dimension of the cube.

The solution of the resulting linear systems corresponding to each processor can then be solve

by using a sequential solver.

With this approach some data have to be shared between the processors, and for the hypercube,

this is done by message passing. More precisely, for the solution of this problem we use two types

p of communications, a nearest neighbor communication scheme between two processors in order

to form the linear systems (equations 32 a) and a global communication scheme which makes the

transition from the horizontal decomposition to the vertical one and vice versa.

6.2.1. Horizontal decomposition

First, the computational domain is decomposed in 1 horizontal strips, where each strip is as-

signed to one processor, see figure below (1=4 i.e. d=2).

I?

,°P,

Figure 2: Horizontal decomposition for the 2-d cube.

By a step of nearest neighbor communication for 4 we can form the matrices A, and the r.h.s

b for all the rows. This step is done by using a Gray code characterizing the different processors

12

01

and the different blocks of the cube (see [13, 141).

The solution of the m = 32/1 linear systems of order 248 are then solved for each processor using

locally a Linpack solver.

This step corresponds to the first half step of the ADI sequence (equations 32.a) i.e. for the

z-direction of the ADI sequence.

6.2.2. Global communication of A" and 4

After the solution of the first step of the ADI sequence, chunks of data have to be exchanged

among the processors in order to assign , contiguous set of columns to each processor.

This step makes the transition between the horizontal and the vertical decompositions and

can be done by different ways (see [8, 14]). I have experimented here two of them, the first called

"linear communication" consits of I - 1 exchanges of blocks of data from each processor to all the

others, and in collaboration with Faisal Saied a second one called "log communication", based on

the representation of the different blocks by binary numbers following a Gray code scheme.

03

For t s s) tm stesi3 ,

"_._ _ _ _ _ _ .. ']

I ' ,., .' -. 4,

~Figure 3: Blocks of data to be exchanged for the 2-d cube.

The arrows inside the blocks show the destination of the chunks.
~For the second case, the global communication takes log 2 (l) time steps, if i is the total number

of processors of the hypercube.

This scheme is explained in [ill and is presented here in a synthetic way. At each time step

of this global communication scheme each processor sends half of its data to one of its neighbors

13

NOO

in the cube. The choice of the data sent and how to reorder the received data in each processor

is function of the binary number of the corresponding block. This second method is clearly better

than the first one in term of efficiency, but also more difficult to implement.

6.2.3. Vertical decomposition

The step of global communication leads to the decomposition of the computational domain in

I vertical strips.

Without a new step of nearest neighbor communications, we can form the matrices Cj for all the

columns, and then we solve locally the n = 64/1 linear systems of order 120, corresponding to the

second half step of the ADI sequence (equations (32.b)).

6.2.4. Update the vector solution

This step consists of updating the vector solution 4 for each section of each vertical strip

(equations (32.c)) in each processor.

'I,. 6.2.5. Global communications of
This step makes the transition between the vertical and the horizontal decomposition of the

computational domain and is done with the two communications schemes seen before.

More exactly, the vector solution j is transposed back among the processors in order to begin

a new time step of the ADI sequence.

6.3. Results

We have experimented our parallel code for cubes of dimensions from 1 up to 5, that is to say

for 1 up to 32 processors.

Two of the main characteristics of a parallelized algorithm are its speedup and its efficiency

(see figures 4 et 5). If T1 is the execution time of the serial algorithm, and T, the execution time

for the same type of algorithm with p processors, then the speedup is defined by S = - < p and

the efficiency by E =- T < 1. The algorithm time versus the communication time gives an idea

of the proportion of the communication time in the whole computation time. In particular, we

can see in the figures (6) and (7) that the linear scheme is better in terms of communication time

when the number of processors is small, and the log scheme becomes better when the number of

processors increases.

Otherwise, it appears that the code running with the linear communication scheme for the

14

V l'I.,

global communication gives some good results. In particular, we get speedups of 1.96 for 2 pro-

.% cessors and 22.12 for 32 processors, which correspond to the following efficiencies of 98 % for 2

processors and 69 % for 32 processors.

In the figure (6), we can see that for this first scheme, the communication time is an increasing

function of I and is at most equal to 20 % of the arithmetic time for 32 processors.

As expected, the code running with the "log communication" scheme is better. The resulting

speedups range from 1.96 for 2 processors to 25.22 for 32 processors which correspond for this last

case to an efficiency of 79 %. In figure (7) the communication time increases with the number of

processors up to 1 - 8 and then decreases, in particular we found that it decreases to 14.5 % of

the arithmetic time for 32 processors.

30
... log scheme
-linear scheme

20

(L

CL0L

1: I0 20 30
PROCESSORS

Figure 4: Speedup on the iPSC Intel

9e.,

I

15

MAW1

1.0-, 1 , I '

log scheme
.. linear scheme

"-t.

C,0.6

S10 20 30
'., PROCESSORS

; . Figure 5: Efficiency on the iPSC Intel

!i ... arithmetic time

200 -- communication time-

n

z

C--%

1W%

t%'I%

_.°......

0 0 0 30
PROCESS0RS

-I

Figre : Aitheti armihmticn time o h

linea scomuncaiomtm

c16

I-too

FN

I~,.iL~ I 'I

... arithmetic time

200 ,,communication time

I-100

............

.I 10 20 30

PROCESSORS

Figure 7: Arithmetic and communication times for the

log scheme

7. Conclusions:

The good results got for the simulation of a 2-D fluid flow in a nozzle on the iPSC Intel

Hypercube show that a CFD (Computational Fluid Dynamics) problem based on the solution of

an ADI sequence can be easily adapted on a distributed memory parallel machine.

The main reason is that this problem can be divided in as many independant parts as needed,

depending of the number of processors and this, without adding any computations. This point

explains why we got such good speedups.

About the communications among the processors, we have seen that the "linear" algorithm

gave some good results, and is easy to implement. The "log" scheme is far more difficult to

* implement but brings some improvements, especially when the number of processors increases.

The theorical analysis of the different running times and of the speedups got for this compu-

tation is actually done and will be detailed in a next paper.

Ackowledgement

I would like to thank Tiba for her help and Faisal for our useful discussions.

17

0&

References

[1] R.M.Beam; R.F.Warming An Implicit Finite-Difference Algorithm for Hyperbolic Systems

in Conservation-Law Form. Journal of Computational Physics, vol.22, 1976, pp 87-110.

[2] T.Cebeci; A.M.O.Smith; G.Mosinskis Calculation of Compressible Adiabatic Turbulent Bound-

ary Layers. AIAA J, vol.8, no.11, 1970, pp 1974-1982.

[3] M.C.Cline Computation of Steady Nozzle Flow by a Time-Dependent Method.

AIAA J, vol.12, no.4, 1974, pp 419-420.

[4] M.C.Cline Computation of Two-Dimensional, Viscous Nozzle Flow. AIAA J, vol.14 no.3, 1976,

pp 295-296.

[5] D.W.Holder; D.C.Macphail; J.S.Thompson Modern Developpement in Fluid Dynamics High

Speed Flow. vol II, Ed L.Howarth, Oxford University Press, 1953.

[6) B.W.Imrie Compressible Fluid Flow. A Halsted Press Book, ed. John Wiler & Sons, 1973.

[7] S.L.Johnsson; Y.Saad; M.H.Schultz Alternating Direction Methods on Multiprocessors. Tech-

nical Report YALEU/DCS/RR-382, Yale University, Dept. of Computer Science, 1985.

[8] S.L.Johnsson; Ching-Tien Ho Spanning Graphs for Optimum Broadcasting and Personalized

Communication in Hypercubes, Technical Report YALEU/DCS/TR-500, Dept. of Computer Sci-

ence, November 1986.

[9] H.Lomax; T.H.Pulliaxn A Fully Implicit Factored Code for Computing Three-Dimensional Flows

on the ILLIAC IV in G.Rodrigue Parallel Computations. Academic Press, 1982 pp 217-250.

[10] P.Porta Implicit Finite-Difference Simulation of an Internal Flow in a Nozzle; an Example of

a Physical Application on a Hypercube, Technical Report YALEU/DCS/RR-553, Yale University,

Dept. of Computer Science, August 1987.

[11] P.Porta; F.Saied Numerical Simulation of a 2-D Compressible Fluid Flow on a Hypercube,

Technical Report Yale University, Dept. of Computer Science, to appear.

[12] W.J.Rae Some Numerical Results on Viscous Low-Density Nozzle Flows in the Slender-Channel

Approximation. AIAA J, 1971, vol.9, no.5, pp 811-820.

[13] Y.Saad; M.H.Schultz Topological Properties of Hypercubes,

Technical Report YALEU/DCS/RR-389, Yale University, Dept. of Computer Science, May 1985.

[14] Y.Saad; M.H.Schultz Data Communications in Parallel Architectures,

Technical Report YALEU/DCS/RR-461, Yale University, Dept. of Computer Science, March 1986.

18

[15) F.Saied; C.T.Ho; S.L.Johnsson; M.H.Schultz Solving Schr6dinger Equation on the Intel iPSC

by the Alternating Direction Method, in Hypercube Multiprocessors 1987, ed. Michael Heath,

SIAM, 1987.

[161 A.H.Shapiro The Dynamics and Thermodynamics of Compressible Fluid Flow.

vol 1, The Ronald Press Company, New York, 1953.

[17] J.L.Steger Implicit Finite-Difference Simulation of Flow about Arbitrary Two-Dimensional Ge-

ometries. AIAA J, vol.16, no.7, 1978, pp 679-686.

[18] T.H.Pulliam;J.L.Steger Implicit Finite-Difference Simulations of Three-Dimensional Compress-

ible Flow. AIAA J, vol.18, no.2, 1980, pp 159-167.

[191 J.C.Strikwerda A Time-Split Difference Scheme for the Compressible Navier-Stokes Equations

with Applications to Flows in Slotted Nozzles. in G.Rodrigue Parallel Computations. Academic

Press, 1982, pp 251-267.

[20] P.D.Thomas Numerical Method for Predicting Flow Characteristics and Performance of Non-

axisymmetric Nozzles-Theory. NASA CR-3147, 1979.

[21] J.F.Thompson; F.C.Thames; C.W.Mastin Automatic Numerical Generation of Body-Fitted

Curvilinear Coordinate System for Fields Containing any Number of Arbitrary Two Dimensional

Bodies. Journal of Computational Physics, vol.15, 1974, pp 299-319.

[22] M.Vinokur Conservation Equations of Gasdynamics in Curvilinear Coordinate Systems. Jour-

nal of Computational Physics, vol.14, 1974, pp 105-125.

S

19

il

ITI
0 b0 0 0 0 0 .t9 0-v

